

The 3rd International Conference ON Biomedical & Clinical Engineering

## Competency Development of Biomedical Engineers for Innovative Technology Lifecycle Management Towards High Quality of Patient Care Parallel workshop 02 12:00 - 2:00 pm, Oct 25<sup>th</sup> , 2017

Iyad Mobarek Malkawi, GM GE Healthcare education Solutions



# Introduction and background



## Healthcare learning & development



## Outcome based competency development



✓ classroom

✓ coaching

 $\checkmark\,$  Learning by doing

✓ Online

- ✓ mentoring
- $\checkmark$  On the job training

# **Quality in Healthcare**

### What contributes to poor quality in healthcare?

## Sample list

- 1. Medical errors
- 2. Underutilization or overuse of services
- 3. Communication problems
- 4. Lack of evidence based decision making

#### How to improve quality?

- 1. Education and training
- 2. Policies, inspection, punishment, reward
- 3. Comprehensive approach to Quality Assurance



# Scope of work to be targeted by training plan



# Main Duties of Clinical Engineering Department

- Inventory control and equipment history
- Scheduled Preventive Maintenance and Corrective maintenance
- Pre-purchase Evaluations and Purchasing related issues
- Contract Management (Service), negotiations and administration
- Equipment Installations and acceptance check
- User Error Tracking and user training
- Safety of health technology for patients and users
- Recalls and Alerts
- Hospital planning Medical equipment planning
- Incidents investigation and reporting
- ≻ HTA, …etc

# Development must address all health technology related interactions with patients



## Medical Equipment Lifecycle \*









### The Value of Pattern



# Competency development and biomed training curricula



## Competency based Development competency model



Determine Data Collection Methodology Collect Process Data Information Develop beta Competency Model (CM)

#### Sample

#### Leadership

- Facilitate effective meeting
- Networking skills
- Influencing skills
- Strategic planning

#### Technical

Technology specific

- PPM, CM and calibration Technology related
  - IT skills, database, test equipment

#### **Clinical skills**

- basic medical physics related to technology; MRI, CT, patient monitoring, ventilators, ...
- clinical terminologies
- Basic clinical procedures

Validate Competency Model (CM) With Leadership Team

Develop Detailed CM Convert CM into a self-assessment online surve**y** 

# **Biomedical Engineering Training Curriculum**

Vision

Provide training to support knowledge and skills of biomedical engineers ultimately enhancing quality of patient care

#### Clinical



#### Technical



#### Leadership



#### Purpose

Bridge the knowledge gap with clinical gap

#### Sample courses

- Clinical applications on imaging, monitoring, Laboratory ... etc.
- Hands on experience in clinical departments

#### Purpose

Improve technical & e health knowledge & skills

#### Sample courses

- Basic & advanced technology specific; CT, MRI, x-ray, US, PET CT, patient monitoring, life support courses, HCIT, Big data, HL7..etc.
- Certified training; AAMI, HTM, AACI,...

#### Purpose Improve leadership, & management skills

#### Sample courses

- Change Acceleration Process (CAP)
- Lean / Six Sigma
- Communications skills
- presentation & influencing skills

# Biomedical Engineering Training Curriculum

Sample course

|                          | Biomedical Engineer/<br>Biomedical technician                                                                                                         | Supervisor         | Head of Department                                                                            | Executive Director of<br>Biomed |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------|---------------------------------|--|
| Leadership<br>Essentials | Time and conflict management   Presentation skills   Stress Management   Communication Skills   Lean 6 Sigma                                          |                    |                                                                                               |                                 |  |
| Leadership               | Building High Performance teams<br>Presentation Developing leadership skills<br>Influencing skills<br>Change Acceleration Process                     |                    |                                                                                               |                                 |  |
| Technical                | CT , MRI courses for biomed<br>Medical equipment specific courses - HCI Waukesha<br>Automated HTM<br>Effective medical equipment lifecycle management |                    |                                                                                               |                                 |  |
| Related<br>Disciplines   |                                                                                                                                                       | HL7 & I<br>HCIT co | Project man<br>Health Technolog<br>Hospital planning<br>Project management<br>DICOM<br>ourses | agement<br>gy Assessment        |  |

## Medical Equipment Lifecycle Training



# Examples of training impact on patient safety



## **Preventable Medical Errors**

Up to <u>440,000</u> Americans are dying annually from preventable medical errors\*



## Annual Accidental Deaths (USA)





- Healthcare is way behind aviation industry in terms of safety, incidents, errors and regulation
- Operating hospitals similar to airplanes ?
- Turkey MOH benefited from military for their PPP evaluation formula

\* http://www.hospitalsafetyscore.org/newsroom/display/hospitalerrors-thirdleading-causeofdeathinus-improvementstooslow

# Sentinel Event Alert # 25 Ventilator-related deaths

## Staffing

- Inadequate training 87%
- Insufficient staff 35%

## **Communication breakdown**

- Among staff 70%
- With patient /family 9 %

#### Incomplete patient assessment

- Room design limits observation 30%
- Delayed /no response to alarm 22%
- Monitor change not recognized 13%

#### Equipment

- Alarm off or set incorrectly 22%
- No alarm for certain disconnects 22%
- Alarm no audible in all areas 22%
- No testing of alarms 13%
- Restraint failure (escape) 13 %

## Distraction

• environmental noise 22%

## Cultural

• (hierarchy/intimidation) 13 %

..\ref\Empathy The Human Connection to Patient Care.mp4

## Sentinel Event Alert # 50 Medical device alarm safety in hospitals

 98 reported events 80 resulted in death and 13 in permanent loss of function

Example: Patient with head injury died because of failing to respond to oxygen loss alarm – brain damage

- Major contributing factors
- Absent or inadequate alarm system (30)
- Improper alarm settings (21)
- Alarm signals not audible in all areas (25)
- Alarm signals inappropriately turned off (36)

#### • Other factors

- Alarm fatigue –most common
- Alarm settings not customized to individual patient or patient population
- Inadequate staff training
- Inadequate staffing to support or respond to alarm signals
- Alarm conditions and settings that are not integrated with other medical devices
- Equipment malfunctions and failures

http://www.jointcommission.org/assets/1/18/SEA\_50\_alarms\_4\_5\_13\_FINAL1

## **User Training**

## a Key component for successful Healthcare Technology Management

Studies on aspects that contribute to equipment breakdown



% of occurrence

#### Source: ECRI Institute

## Resources

- 1. American Collage of Clinical Engineering (ACCE) <u>www.accenet.org</u>
- 2. World Health Organization <u>www.who.int</u>
- 3. Association for the Advancement of Medical Instrumentation (AAMI) <u>www.AAMI.org</u>
- 4. Emergency Research Institute documentations and website <u>www.ecri.org</u>
- 5. Health Information and Management System Society (HIMSS) <u>www.himss.org</u>
- 6. IEEE Engineering in Medicine and Biology <u>www.ieee.org/embs/index.html</u>
- 7. Iyad Mobarek, Computerized maintenance management system, WHO Medical device technical series, WHO 2011 <u>www.who.int</u>
- Iyad Mobarek, et al, Fully Automated Clinical Engineering Technical Management System, Journal of Clinical Engineering: January/March 2006 - Volume 31 - Issue 1 - pp 46-60
- 9. Iyad Mobarek, et al, Fully Automated Downtime Protocol, Journal of Clinical Engineering: October/December 2010 - Volume 35 - Issue 4 - pp 195-214



## Appendix 1- sample courses

## Effective Health Technology Management

#### Summary

This 1-day instructor-led course introduces participants to the different phases of medical equipment lifecycle. It also introduces them to the different mechanisms and procedures needed to manage effectively the contribution of medical equipment to contemporary healthcare systems.

#### **Course Objectives**

Improve awareness on role of biomed within todays healthcare systems Enhance technical management skills of biomedical engineers for medical equipment lifecycle Introduce participants to the main elements and procedures to establish their biomedical center of excellence

Enhance out of the box thinking

**Target Audience** 

**Biomedical engineers** 



# **Change Acceleration Process (CAP)**

#### Summary

This 3-day course is designed to focus on building change management and influencing skills and applying learning principles to lead projects within the workplace. Working individually and in groups, participants undergo a 3-day, in-classroom training which includes applied work and report-out sessions.

#### **Course Objectives**

- Key components of managing change initiatives for successful results
- Understand GE Change Acceleration Process (CAP) Model for managing change and influencing others
- Apply GE CAP tools to prepare for change, shape a change vision, create a shared need for change, mobilize change commitment, sustain change activity and monitor change progress.
- Understand the key leadership behaviors and skills for managing the change process, utilizing the CAP tools and effectively influencing others.

### **Target Audience**

Managers and executives across all departments, as well as employees with present or future responsibility over people, units, departments, functions.





## Introduction to Big Data in Healthcare

## Background

Big Data can have a great impact on healthcare contemporary systems by improving the accessibility, efficiency and productivity, and providing better healthcare quality at lower cost.

#### VOLUME



#### Objectives

- Explore current technologies and their limitation in terms of capacity, velocity and structure.
- Introduce Big Data and its solutions to the limitation of the current technologies
- Explain with high level details the technologies that Big Data is based on
- Give several case studies on how Big Data technologies can help businesses to remove obstacles and problems.
- Focus on the applications of Big Data to healthcare to resolve issues and overcome challenges

#### **Target Audience**

Healthcare leaders including senior executives, vice presidents, directors, managers, project managers, management engineers, clinicians in the hospital and the ambulatory setting, vendors, and consultants in both the hospital and ambulatory settings



| Duration<br>(Days) | Price (SAR)/ course | Max number of attendees |
|--------------------|---------------------|-------------------------|
| 1                  |                     | 25                      |

## **Basic Ultrasound for Field Engineers**

#### Summary

This two-day course provides a solid grounding in human physiology, coupled with a review of Ultrasound physics, the Aspire and Doppler systems, and hands-on demonstrations for heart, carotid, thyroid, liver and kidney imaging.

#### **Objectives**

The objective of this course is to bridge the gap between biomedical engineers and physicians providing them with the basic knowledge and clinical procedures involved in US imaging

### **Target Audience**

**Biomedical Engineers** 







close

## Appendix 2– Exercise



## Presenting Group- ( ) Details

| No. | Participant Name |
|-----|------------------|
|     |                  |
| 1   |                  |
| 2   |                  |
| 3   |                  |
| 4   |                  |
| 5   |                  |
| 6   |                  |

## Exercise Matrix for Health Technology (Medical equipment) Analysis

- Please answer the following questions by Yes, No or In progress whenever appropriate as indicated in the slides
- For questions with rating
  - 1. Extremely satisfied
  - 2. Satisfied
  - 3. Neutral
  - 4. Not satisfied
  - 5. Extremely not satisfied
- Please briefly explain your conclusion based on this exercise

## HTM-Exercise ...cont Think of any hospital you practiced in

| 1                                                                            | 2                                                  | 3                                                               | 4                              | 5                                                                                   |
|------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|
| No of<br>Biomedical<br>Engineers and<br>Technicians in<br>your<br>department | Training need<br>compared to<br>job<br>requirement | Availability of<br>documented &<br>transparent<br>training plan | relation with<br>Medical staff | Relation with<br>Administration and<br>team work of the<br>biomedical<br>department |
| ( ) Eng.                                                                     | <b>D</b> 1                                         | <b>u</b> 1                                                      | <b>D</b> 1                     | <b>1</b>                                                                            |
| ( )Tech.                                                                     | <b>2</b>                                           | <b>D</b> 2                                                      | <b>2</b>                       | <b>2</b>                                                                            |
|                                                                              | <b>3</b>                                           | <b>I</b> 3                                                      | <b>I</b> 3                     | <b>3</b>                                                                            |
|                                                                              | <b>4</b>                                           | <b>4</b>                                                        | <b>4</b>                       | <b>4</b>                                                                            |
|                                                                              | <b>5</b>                                           | <b>D</b> 5                                                      | <b>D</b> 5                     | <b>5</b>                                                                            |
|                                                                              |                                                    |                                                                 |                                |                                                                                     |

## HTM – Exercise

| 6                                                                                                                                                   | 7                                                                                                                                                            | 8                                                                                                               | 9                                                                                                                                                                                  | 10                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Is there any<br>documented /<br>accredited HT or<br>medical devices<br>Policy<br>biomedical<br>engineers need<br>to follow in their<br>daily work ? | Is there a National<br>standard (or<br>recommended)<br>listings of medical<br>equipment per<br>health care facility,<br>per disease or per<br>level of care? | Are there national<br>procurement<br>guidelines for<br>medical devices? If<br>yes are they<br>enforced by law ? | Are there<br>National,<br>generic and<br>standard<br>technical<br>specifications<br>for<br>procurement of<br>medical<br>devices? If yes<br>is there a<br>process to<br>update them | Is there a national<br>nomenclature<br>system for<br>medical devices ?<br>If yes please<br>specify |
|                                                                                                                                                     |                                                                                                                                                              |                                                                                                                 |                                                                                                                                                                                    |                                                                                                    |